АННОТАЦИИ РАБОЧИХ ПРОГРАММ

образовательной программы подготовки бакалавриата «Программно-аппаратные решения для систем искусственного интеллекта» по направлению

09.03.01 «Информатика и вычислительная техника»

«Технология объектно-ориентированного программирования и проектирования»

В дисциплине «Технология объектно-ориентированного программирования и проектирования» рассматриваются современные методы и средства проектирования программного обеспечения, основанные на применении объектно-ориентированного подхода, унифицированного языка моделирования UML и языка программирования Java. Слушатели курса знакомятся с основными понятиями инженерии программного обеспечения, изучают современную технологию создания программного обеспечения. Курс содержит лекционные занятия, лабораторные работы и курсовую работу, при выполнении которых студенты овладевают практическими навыками моделирования и разработки программного обеспечения на языке Java.

«Алгоритмы и структуры данных»

Изучаются способы реализации в ЭВМ абстрактных данных и вытекающие из этих способов свойства алгоритмов обработки этих данных. Обсуждаются способы генерации множеств для автоматизации тестирования программ и оборудования. Рассматриваются популярные алгоритмы на ненагруженных и нагруженных графах, жадные алгоритмы, эмпирические алгоритмы для переборных задач. Особое внимание при этом уделяется оптимальной организации данных для этих алгоритмов. Изучаются способы организации данных в реальных задачах, когда одному и тому же набору данных могут применяться одновременно несколько абстрактных моделей. Вводится понятие класса как способа реализации структуры данных в конкретной системе программирования. Даётся способ оценки временной сложности алгоритма в машинном эксперименте.

«Основы машинного обучения»

Ha занятиях дисциплины "Машинное обучение" лекционных рассматриваются вопросы применения методов машинного обучения для различных кейсов. Каждый метод рассматривается с точки зрения алгоритмов, лежащих в его основе, а также принципов применения и особенностей различных методов. Помимо практической стороны применения методов обучения рассматриваются машинного математические основы рассматриваемых методов. На практических занятиях изучаются вопросы применения инструментальных средств ДЛЯ использования методов машинного обучения.

«Теория автоматов»

Дисциплина «Теория автоматов» служит ДЛЯ формирования систематических знаний в области теории автоматов, выработки умений изученных решении инженерных применения методов В программировании, развития практических навыков В логическом В дискретных устройств. проектировании данномкурсерассматриваютсялогические основыте ориидискретных устройств, понятие абстрактного автомата и различные виды автоматов, принципы построения автоматных сетей, методы абстрактного и структурного синтеза конечных автоматов, методы синтеза комбинационных и последовательностных схем.

«Технологии Web-программирования»

Дисциплина «Технологии Web-программирования» предусматривает теоретическое ипрактическое обучение студентовинтер фейсными серверным технологии разработки web-приложений. Основное внимание уделено изучению принципам построения трехзвенных архитектурси спользованием сервера Арас he Тотсаt, применению технологий HTML, ASP, сервлетов, JSP и GWT. Курс содержит лекционные занятия и лабораторные работы, при выполнении которых студенты овладевают практическими навыками разработки Web-приложений.

«Метрология»

Дисциплина «Метрология» обеспечивает метрологическую подготов куспециал истов. Изучаются виды и методы измерения различных величин, основы метрологического обеспечения современного производства, рассматриваются основные виды средств измерений.

«Узлы и устройства цифровых систем»

Дисциплина «Узлы и устройства цифровых систем» направлена на изучение комбинационных и последовательностных узлов и устройств на структурном и функционально-логическом уровне. Студенты получают навыки синтеза и анализа схем, реализованных на логических и запоминающих элементах, а также осваивают подходы к решению общих проблем при проектировании цифровых вычислительных устройств (проблемы питания, борьбы с помехами, тактирования и другие).

«Искусственный интеллект. Базовый курс»

Дисциплина «Искусственный интеллект. Базовый курс» обеспечивает базовую теоретическую и практическую подготовку в области построения систем искусственного интеллекта. Содержание дисциплины включает в себя изучение методов поиска решений в пространстве состояний, моделей представления знаний и методов их обработки, моделей и методов обработки неопределенных знаний, экспертных систем, интеллектуальных агентов и систем. Лабораторный многоагентных практикум ориентирован формирование базовых навыков разработки систем, основанных на знаниях. Дисциплина обеспечивает основу ДЛЯ более глубокого перспективных направлений ИИ в рамках дисциплин продвинутого уровня.

«Основы нейронных сетей»

В рамках дисциплины рассматриваются основные вопросы, связанные с применением нейронных сетей в практической деятельности студентов. Рассматриваются основные вопросы развития концепции нейронных сетей, подходы к использованию, возможные архитектуры и отдельные инструментальные средства для их использования, а также подходы к применению в практической деятельности. На лекционных занятиях рассматриваются вопросы применения нейронных сетей, включая сбор и

предварительную обработку данных и оптимизацию архитектуры. На практических занятиях обучающиеся изучают существующие решения по обучению и применению нейронных сетей. «Архитектура и проектирование информационных систем»

Дисциплина «Архитектура и проектирование информационных систем» посвящена изучению принципов организации и проектирования современных систем обработки данных на основе архитектурного подхода. Системы обработки данных рассматриваются как многоуровневая иерархическая система. В рамках данной дисциплины рассматриваются базовые принципы организации функционирования и проектирования современных вычислительных и информационных систем.

Отдельные разделы курса посвящены архитектурам RISC и CISC, уровню взаимодействия базовых подсистем компьютера, уровню аппаратных и программных платформ и уровню операционной системы. В рамках курсового проекта особое внимание уделяется процессу проектирования компьютерной архитектуры.

«Проектирование проблемно-ориентированных вычислительных устройств»

Дисциплина«Проектированиепроблемно-ориентированных вычислитель ных устройств» направлена на изучение языка проектирования высокого уровня Verilog, освоение методологии проектирования вычислительных узлов с использованием современных систем автоматизированного проектирования и получение навыков описания, моделирования, синтеза и верификации дискретных и смешанных систем. На практике будут освоены методики описания комбинационных схем, последовательностных схем, конечных автоматов и операционных устройств. В качестве инструментальных средств проектирования при выполнении практических работ используются системы ModelSimAltera и Quartus II.

«Системное программирование в среде Linux»

Вдисциплинерассматриваютсявнутренняяорганизацияоперационнойсист емы Linux и системные вызовы для обеспечения многозадачного режима работы компьютера. Основное внимание уделено механизмам порождения процессов, их взаимодействия и синхронизации. Курс содержит лекционные

занятия и лабораторные работы, при выполнении которых студенты овладевают практическими навыками разработки параллельно работающих программ. «Параллельные алгоритмы и системы»

Курс"Параллельные алгоритмый системы" представляет собой введениев теорию и практику разработки эффективных параллельных программ и систем, основанных на многопроцессорных архитектурах. Студенты изучат принципы параллельного программирования и алгоритмические подходы, необходимые для достижения масштабируемости, производительности и надежности в многопоточных средах. Будут рассмотрены различные модели памяти и проблемы, связанные с согласованностью кешей и взаимодействием потоков. Студенты изучат различные абстракции и примитивы параллельного программирования, такие как потоки, блокировки, семафоры и атомарные операции. Особое внимание будет уделено разработке параллельных алгоритмов для распределенных вычислений и обработки данных. В ходе практических занятий и проектных работ студенты будут решать задачи, требующие параллельного программирования, И анализировать производительность и корректность. Курс призван подготовить студентов к эффективному использованию мощности многопроцессорных систем в различных областях, включая вычислительные науки, обработку больших данных и распределенные системы.

«Распределенные системы и технологии»

Дисциплина обеспечивает теоретическую подготовку в области принциповорганизацииифункционированияраспределенных системобработки ихранения информации.

В рамках данной дисциплины изучаются общие принципы построение распределенных систем, XML технологии, компонентные технологии и технологии интеграции данных и приложений.

Данная дисциплина служит фундаментом для изучения ряда специальных дисциплин,посвященныхпрограммированиюраспределенных системидисциплин,

посвященных организации, функционированию и проектированию корпоративных информационных систем.

«Микропроцессорные системы»

Рассматриваются вопросы развития и основные технические характеристикимикроконтроллеров, обсуждается ихвлияние на области применения средств вычислительной техники и методологию проектирования цифровых микроконтроллерных систем. Обсуждаются модель микроконтроллера, основные их характеристики и вопросы организации структуры типовых микропроцессорных систем, организация и функционирование центрального процессора, характеристика системы команд, их форматы и способы адресации операндов.

функционирования, настройки

периферийных модулей контроллера: параллельные основных последовательные адаптеры, контроллеры обработки прерываний, таймеры/счетчики идругиеспец модули. Значительное внимание уделяется протоколам иальные последовательных интерфейсов, используемых ДЛЯ сопряжения периферийными схемами и устройствами управления. Рассматриваются вопросы организации резидентных модулей памяти программ и данных, вопросы расширения данных видовпамятивмикроконтроллерных системах. Рассматриваются примеры прогр амм для реализации типовых функций в системах, этапы разработки и отладки

организации,

Рассматриваются

вопросы

программ с использованием симуляторов.

Большое внимание в дисциплине уделяется вопросам организации 8-, 16-и 32битных однокристальных микроконтроллеров ведущих мировых фирм: Intel, Motorola (NXP Semiconductors) и Philips (NXP Semiconductors). Рассматриваются доступные разработчикам аппаратные и программные средства отладки микроконтроллерных систем.

Дается обзор современных микропроцессорных ARC-систем с перестраиваемой структурой и системой команд фирмы Synopsys.

«Элективные курсы по физической культуре и спорту»

Изучениедисциплины«Элективныекурсыпофизическойкультуреиспорту» ориентировано на развитие и совершенствование физических качеств, двигательных умений и навыков обучающихся для обеспечения психофизической

готовностикбудущейпрофессиональнойдеятельностиииспользованиясредств

физической культуры в процессе организации активного досуга и повышения качества жизни.

Элективные курсы по физической культуре и спорту являются обязательными, к освоению и в зачётные единицы не переводится.

Студенты приобретают опыт практической деятельности по повышению уровня функциональных и двигательных способностей, направленному развитию физических качеств, укреплению здоровья.

Программаадаптивнойфизическойкультурынаправленанаформированиежизн енно необходимых знаний, умений и навыков по сохранению и поддержанию организма в активном функциональном состоянии, обучению технике правильного выполнения физических упражнений, осознанию занимающимися жизненно необходимой потребности в двигательной активности.

К каждому студенту требуется индивидуальный подход, поэтому при выборе конкретных физических упражнений, рекомендованных студентам, внимание обращается на физические способности студента, специфику его заболевания и уровень его социальной адаптации.

«Тайм-менеджмент»

Дисциплина направлена на получение навыков эффективного управления собственной деятельностью. Особое внимание отводится самопознанию, его роли в определении эффективных методов и техник тайм-менеджмента. Изучаются техники и методы управления временем, вопросы планирования деятельности с учетом особенностей характера, индивидуального биологического ритма, эмоционального и физического состояний. Дисциплина рассматривает вопросы профессионального роста.

В профессиональном плане знание методик тайм-менеджмента и умение их применять обеспечивают самоорганизованность саморазвитие, снижают стрессовуюнагрузку. Знаниеособенностейулучшаетвзаимодействиесдругимил юдьми и позволяет найти индивидуальный подход решения задач. Итогом изучения дисциплины является разработка индивидуального плана развития и профессионального роста, направленного на закрепление умений управления своим временем, навыков построения траекторий саморазвития на основе принципов образования в течение всей жизни.

«Межличностные коммуникации в малых группах и организациях»

Курс рассматривает ключевые особенности коммуникации в процессе взаимодействия людей в формальных и неформальных социальных группах, работы в коллективах. Студентам предлагается проанализировать основные характерные черты и аксиомы человеческой коммуникации, изучить особенности структуры, динамики и сплоченности малых социальных групп. На основе опыта социально-психологических экспериментов обсуждаются эффекты коммуникации в группах. Применительно к общению в коллективах рассматриваются основные свойства организациях компетентного коммуникатора, самодиагностики приемы диагностики И коммуникативного поведения, методы психологической защиты, приемы коммуникации в ситуациях конфликтов и эмоциональной напряженности.

«Культура профессиональной коммуникации»

Дисциплина «Культура профессиональных коммуникаций» – гуманитарная дисциплина теоретико-прикладного значения. Предметом изучения дисциплиныявляютсяпсихологическиеаспектыделовогообщения:вербальнаяине вербальная коммуникация, законы перцепции, коммуникативного интерактивного взаимодействия, а также культурные регуляторы поведения в деловой среде. Дисциплина знакомит студентов со структурой, условиями реализации, уровнями и различными формами делового общения и нормами делового этикета. Особое внимание в программе данного курса уделяется вопросам психологического влияния в контексте различных форм делового общения.

«Этика и культура профессиональных отношений»

Курс «Этика и культура профессиональных отношений» направлен на формированиеглубокихсоциально-личностныхипрофессиональныхкомпетенц владение базовыми навыками принятия этических профессиональной сфере; понимание специфики социальной ответственности в со-временном гражданском обществе; способность работать в коллективах, возглавлять их, учитывать этические особенности взаимодействия между быстрой сотрудниками; готовность К адаптации меняющейся профессиональной сфере; умение решать этические конфликты. Программа курса включает в себя раздел нормативных теорий (например, утилитаризма, деонтологии и т. д.), некоторое рассмотрение формальных этических кодексов инженерных профессий, которые необходимы для более глубокого понимания своей будущей профессии, себя как предстоящего специалиста в данной области, а также важности этической составляющей в работе в целом.

«Правовые основы профессиональной деятельности и защиты прав на объекты интеллектуальной собственности»

Дисциплина посвящена особенностям правового регулирования профессиональной деятельности будущих специалистов.

Особоевниманиеуделяетсяправовомуобеспечениюинформационнойбезопасн ости, защите государственной тайны, а также защите прав на объекты интеллектуальной собственности.

«Специальные главы математического анализа»

Изучение методологии математического подхода к анализу инженерных задач и других естественнонаучных проблем является целью дисциплины. Задачи Численное оптимизации. решение нелинейных уравнений. Ортогональные базисы как собственные функции в моделях физических процессов. Ряды Фурье. Модели инвариантные по времени. Сверточное описание инвариантных моделей. Преобразование Фурье. Число обусловленности линейного оператора. Базисы Рисса. Дискретные модели и рекуррентные уравнения. Многомерные интегралы. Фильтрация: задачи усреднения и сглаживания. Векторный анализ. Дифференциальные формы. Формула Стокса. Физические модели и типы векторных полей.

«Основы тестирования программного обеспечения»

Содержание дисциплины охватывает круг вопросов, связанных с верификацией и тестированием программного обеспечения (ПО), рассмотрению техник и методов тестирования, проектированием тестовых мероприятий, организации процесса тестирования ПО. В ходе изучения важно приобретение студентами системных знаний в сфере верификации и тестирования ПО. Лекционный материал дисциплины по каждому разделу подкрепляется практическими примерами, рассматриваемыми на парах.

«Основы программирования на языке Ассемблера»

Учебная дисциплина «Основы программирования на языке Ассемблера» формирует знания, умения и навыки, необходимые для разработки программного обеспечения на ассемблере — языке программирования низкого уровня. В рамках учебной дисциплины «Основы программирования на языке Ассемблера» изучаются основные инструкции ассемблера. Практическая часть курса в виде практических работ нацелена на приобретение и закрепление умений и навыков разрабатывать, отлаживать, проверять работоспособность, модифицировать программное обеспечение на ассемблере.

«Алгебраические структуры»

Современная алгебра, ее язык и подходы являются ключевыми в подготовке IT-специалистов.

В данном курсе на языке алгебраических структур обобщаются следующие понятия: линейные пространства и геометрические преобразования, евклидовы и унитарные пространства. Линейные операторы рассматриваются через свойстваглавнойлинейнойгруппы. Рассматриваются основные понятияте ориигру пп, коммутативных колец и конечных полей, которые обобщают и систематизируют ранее изученные алгебраические объекты. Обсуждаются алгебраические подходы к решению прикладных задач.

«Тестирование программного обеспечения»

Содержание дисциплины охватывает круг вопросов, связанных верификацией И тестированием программного обеспечения рассмотрению техник и методов тестирования, проектированием тестовых ПΟ, мероприятий, организации процесса тестирования изучению особенностей тестирования вебприложений. В ходе изучения дисциплины предполагается приобретение студентами системных знаний в сфере верификации и тестирования программного обеспечения

«Основы информационной безопасности»

Практика внедрения информационных технологий без увязки с обеспечение информационной безопасности существенно повышает

вероятность проявления информационных угроз. В рамках дисциплины "Основы информационной безопасности" рассматриваются основы обеспечения информационной безопасности и защиты информации, свойства информации как объекта защиты, некоторые аспекты криптографии, вырабатывается представление о значимости проблемы обеспечения информационной безопасности личности и компании.

«Статистический анализ и введение в биостатистику»

Врамкахдисциплиныизучаютсяклассическиеисовременныеметодыанализ а статистических данных, а также их применение к анализу данных различного типа. Методы математической статистики включают в себя задачи точечного и доверительного оценивания параметра, а также задачи проверки статистических гипотез. Помимо классических моделей статистического анализа рассматриваются современные обобщения классической модели линейной регрессии: обобщенные линейные, смешанные и обобщенные смешанныемодели регрессионного анализа.

Определенноевниманиеврамкахданногокурсауделяется задачаммножественно го тестирования и мета-анализа. Особое внимание уделяется правильной постановке задач статистического анализа и интерпретации полученных результатов. Рассматриваются основные принципы организации биомедицинских статистических исследований, нацеленных на анализ статистических связей изучаемых характеристик или на анализ динамики изменений изучаемой характеристики с течением времени.

«Технологии аппаратного обеспечения цифровых систем»

Дисциплинапозволяетсформироватьпредставлениеотехнологиях, использу емых в аппаратном обеспечении цифровых систем (ЦС) и осознать место конструкторско-технологического этапа в общем процессе проектирования и производства ЦС. Изучаются основные принципы модульного конструирования, методы преобразования схемы устройства в конструктивные модули. В результате студенты получают знания и навыки перехода от схемы устройства к его реализации, исходя из конструкторско-эксплуатационных и технологических требований для модулей всех уровней.

«Аппаратное обеспечение искусственного интеллекта»

Дисциплина«Аппаратноеобеспечениеискусственногоинтеллекта»посвящ ена изучению оборудования, на котором реализация алгоритмов искусственного интеллекта (ИИ) наиболее эффективна. Задачи ИИ могут выполняться на любых процессорах, но большинство моделей машинного обучения требуют применения специализированных аппаратных средств с соответствующими характеристиками. В рамках дисциплины будут изучены аппаратные решения, обеспечивающие компромисс между быстродействием, эффективностью, точностью и гибкостью при решении задач ИИ, показаны способы выбора аппаратной базы для конкретных видов задач, рассмотрены ограничения аппаратных технологий и способы их преодоления.

«Численное моделирование»

В курсе изучаются теоретические основы численных методов и оценивания погрешностей этих методов. Изучаются методы аппроксимации функций

(интерполяция, наилучшееравномерноеприближение, методнаименьших квадр сплайны), дифференцирование атов, численное И интегрирование. Рассматриваются основные методы численного решения обыкновенных дифференциальных уравнений и систем уравнений (одношаговые многошаговые). Кроме того, изучаются методы приближённого решения нелинейных алгебраических уравнений и систем уравнений, а также поиска экстремумов функций нескольких переменных. Практические работы предназначены для реализации этих методов на компьютере, оценки фактически достигаемой точности и её соответствия теории.

«Теория принятия технических решений»

Проектирование технических систем всегда является результатом компромисса между разнообразными требованиями. Формализация этогопроцесса

достигаетсяметодамиоптимизацииимногокритериальноговыбора. Вкурсеотра жается современное состояние указанных инструментов, выясняется природа многокритериальности, возможности человека в многокритериальных задачах выбора. Вводятся основные понятия многокритериальной оптимизации.

Рассматриваются методы многокритериальной оптимизации, современные графические итеративные методы, методы аппроксимации паретовой границы для нелинейных систем.

«Компьютерная графика»

В курсе изучаются базовые теоретические основы компьютерной графики, математические и алгоритмические средства формирования и преобразования математических моделей графических объектов. У студентов вырабатываются практические навыки использования готовых графических пакетов, а также формируется умение разработки программных комплексов обработки и представления графической информации для графических автоматизированных систем различного (конструкторских, вычислительных, АСТПП и других). Изучаются методы представления и преобразования графических объектов на плоскости и в пространстве, всевозможные алгоритмы отсечения объектов (отрезков, выпуклых и невыпуклых многоугольников и пространственных фигур с всевозможными окнами и фигурами отсечения). Изучаются и исследуются различные алгоритмы выявления видимости объектовисложных сцен, алгоритмывизуализации и реалистического представле ния визуализируемых объектов с учетом освещения, окраски объектов, их прозрачности и действия затенения, а также влияния фактуры на внешний вид изображаемого объекта сложной сцены.

«Введение в разработку интеллектуальных систем»

В рамках дисциплины обучающиеся изучают концепцию систем поддержки принятия решений, основные архитектуры и подходы к их разработке. На практических занятиях изучаются прикладные аспекты создания интеллектуальных систем.

«Прикладные математические алгоритмы»

В данном курсе изучаются математические пакеты, предназначенные для решения прикладных инженерных математических задач, их возможности и сравнительные преимущества, структура пакетов и методика их использования. Рассматриваются примеры использования пакетов для

решения типовых прикладных задач линейной алгебры, математического анализа, теории вероятностей и математической статистики.

«Интерфейсы периферийных устройств»

Дисциплина «Интерфейсы периферийных устройств» рассматривает основные принципы организации связей процессорного ядра с периферийными устройствами, классификацию интерфейсов периферийных устройств, методы передачи и синхронизации данных в параллельных и последовательных интерфейсах. На примере интерфейсов RS-XX, ISA, SPI, I2C, USB, PCI и др. рассматриваются варианты построения интерфейсных блоков для устройств связи с объектами управления.

«Основы компьютерного зрения»

Дисциплина посвящена основам обработки сигналов и изображений, изучению основных методов и алгоритмов работы с изображениями. В процессе обучения предполагается сформировать у студентов практические навыки работы с библиотекой компьютерного зрения OpenCV.

«Алгоритмы и процессоры цифровой обработки сигналов»

Дисциплина «Алгоритмы и процессоры цифровой обработки сигналов» рассматривает базовые алгоритмы обработки сигналов и изображений; архитектуру современных процессоров цифровой обработки сигналов; интерактивную среду разработки и отладки программ для платформы процессора ЦОС с использованием языков программирования С, ассемблера и библиотек аппаратно-ориентированных функций; организацию процесса цифровой обработки сигналов и изображений в режиме реальноговремени на платформе процессора ЦОС фирмы Texas Instruments.

«Введение в квантовые вычисления»

В рамках данного курса будет проведено знакомство с бурно развивающейся областью науки и техники на стыке физики и компьютерных наук — квантовыми вычислениями. Будут даны необходимые сведения из линейной алгебры и квантовой механики. В курсе будет описана схемная модель квантовых вычислений. Будут разобраны примеры известных

квантовых алгоритмов: алгоритмы, основанные на квантовом преобразовании Фурье (алгоритм Шора), квантовые алгоритмы поиска, и некоторые другие задачи. Слушателей познакомят с существующими проблемами при построении квантовых компьютеров и существующими способами их решения.

«Нечеткая логика»

Дается обзор неклассических логик. Особое внимание уделяется нечеткой логике и лежащей в ее основе теории нечетких множеств. Рассматриваются свойства и операции с нечеткими множествами, нечеткими отношениями, нечеткими числами. Разбираются алгоритмы нечеткого вывода, с помощью которых решаются прикладные задачи.

«Этика и безопасность искусственного интеллекта»

Исторически сложилось, что развитие технологий происходит не планомерно, а экспоненциально. Примерами могут служить промышленных революции, под влиянием которых происходила перестройка общества Каждая порождалась целом. ИЗ них экономической целесообразностью и привлекательностью повышения уровня и качества жизни социума. XXI век ознаменован четвертой промышленной революцией, которая подразумевает широкое внедрение киберфизических систем в производство, в том числе технологий на основе искусственного интеллекта (ИИ). Футурологические исследования ИИ основаны на двух основных сценариях, воспринимаемых с одной стороны, как мощный скачок производственных процессов, трансформацию и оптимизацию всех сфер жизни человека, с другой стороны, как повышение риска непрогнозируемых последствий, связанных с сегрегацией общества, кибербезопасностью, юридической ответственностью, расшатыванием политических систем. С этих позиций высока актуальность интеграции нормативной и прикладной этики в технически трансформирующееся общество. Этические вопросы, связанные с ИИ, затрагивают всех участников жизненного цикла этих систем, от разработчиков до конечных пользователей, существует потребность юридического, технического, социального регулирования с целью сохранения подконтрольности этого нового явления.

Данная дисциплина направлена на изучение исторических аспектов нормативной и прикладной этики, отечественного и международного правового регулирования по вопросам обеспечения и сохранения прав и свобод человека в условиях использования систем ИИ, применение и адаптацию традиционных этических норм к условиям глобальной цифровизации.

«Беспилотные транспортные средства»

Врамкахдисциплинырассматриваютсяконцепцияавтономныхтранспортных средств, включая ее различные имплементации, основные требования и свойства беспилотного транспорта, компоненты и ограничения. На лекционных занятиях рассматриваются отдельные аспекты разработки и применения беспилотных транспортных средств, существующие ограничения как в области научно-технических решений, так и в области законодательства. Практические занятия подразумевают развитие навыков реализации отдельных аспектов повышения автономности транспортных средств.

«Введение в многоагентные системы»

Дисциплина обеспечивает базовую теоретическую и практическую подготовку студентов в области создания распределенных интеллектуальных систем на основе технологий многоагентных систем (МАС). Знакомит с МАС,их концепцией И технологиями современным состоянием, основныминаправленияразвития И перспективами использования создании информационных систем различного назначения. Практикум нацелен на формирование базовых практических компетенций в области разработки МАС.

«Философия»

Философия — гуманитарная дисциплина, изучающая общие и фундаментальные проблемы, такие как проблемы, связанные с реальностью, экзистенцией, знанием, ценностями, сознанием, мышлением и языком. Философия отличается от других способов решения таких проблем своим критическим и системным подходом и опорой на рациональные аргументы.

Изучение философии формирует целостное представление о мире, его структурной организации и свойствах, определяет мировоззрение человека и общества, составляет методологическую основу их деятельности. Среди центральных проблем формирующейся в настоящее время новой философской парадигмы можно назвать: разработка теоретической модели сложного и противоречивого современного мира, обоснование роли человека и субъективного фактора в его развитии, становление информационного общества как мирового процесса, коэволюция его с окружающей средой и др.

«Алгебра и геометрия»

Линейная алгебра и аналитическая геометрия представляют собой важный раздел высшей математики, которая, в свою очередь, является ключевой дисциплиной в подготовке специалистов с высшим техническим и естественнонаучным образованием.

В данном курсе рассматриваются идеи построения новых числовых систем на комплексных чисел, кольца полиномов комплексных, вещественных и рациональных чисел; базовые понятия линейной алгебры: матрицы и определители, системы линейных уравнений; основные понятия и идеи векторной алгебры и аналитической геометрии на плоскости и в пространстве, включая кривые и поверхности 2-го порядка. Изучаются так же векторные пространства, включая евклидовы и унитарные Линейные операторы векторных пространства. В пространствах рассматриваются как основа алгебраического подхода к решению линейных дифференциальных уравнений и их систем, приведения квадратичных форм к каноническому виду.

«Математический анализ»

Математический анализ -ключевой раздел высшей математики, необходимый при подготовке специалистов инженерных специальностей. В данном курсе рассматривается связь основных понятий классического математического анализа с инженерными приложениями.

Основу ее составляют следующие темы: функции одной переменной (пределы и непрерывность; дифференциальное исчисление; формула Тейлора; исследование функций по производной). Интегральное исчисление (неопределенный и

определенный интеграл, геометрические и физические приложения; несобственные интегралы). Числовые истепенные ряды. Исследование функцийнеск ольких переменных. Методы решения простейших дифференциальных уравнений.

«Физика»

Дисциплина «Физика» охватываетразделы «Механика», «Динамика», «Механические колебания», «Молекулярная физика и термодинамика», «Электричество», «Магнетизм». В программу включены практические и лабораторные занятия по всем разделам.

«Программирование»

Дисциплина «Программирование» нацелена на изучение и освоение базовых понятий, методов и приемов программирования на языке Си и является базовой в программистском образовании студентов, обучающихся по направлению подготовки 09.03.01-«Информатика и вычислительная техника». Курс содержит лекционные занятия, лабораторные работы и курсовые работы, при выполнении которых студенты овладевают практическими навыками разработки программного обеспечения на языке Си.

«Информатика»

В данном курсе рассматриваются основы и фундаментальные понятия информатики, что дает студентам достаточно полное и всестороннее понимание выбранной ими области обучения.

Курс начинается с архитектуры вычислительных машин, затем изучаются элементыдискретнойматематики, далеепроисходитвведениевалгоритмыистру ктурыданных. Основыпрограммирования изучаются напримерея зыка Паскаль. Студенты изучают основные операторы языка: ветвление, циклы, учатся конструировать программы с использованием процедур и функций. Обучаются работе с файлами, типами, массивами, указателями и записями.

«Информационные технологии»

В данном курсе рассматриваются основы и фундаментальные понятия информатики, что дает студентам достаточно полное и всестороннее понимание выбранной ими области обучения.

Курс продолжает изучение аппаратного устройства вычислительных машин. В частности, более глубоко рассматривается устройство процессора и памяти. Введение в программирование основывается на языке ассемблера с прицелом на дальнейшее изучение языка С.

«История России»

Предусматривает изучение основных закономерностей и тенденций развития исторического процесса. Главное внимание уделяется изучению основных этапов истории России в контексте мировой истории, места и роли России в истории человечества и в современном мире. Россия рассматривается как многонациональное государство и цивилизационное пространство, созданное усилиями всех народов, проживающих на ее территории.

«Экология»

Целью данной дисциплины является получение фундаментальных знаний о современных экологических проблемах природного и антропогенного характера, а также формирование у студентов способности учитывать и оценивать

последствиясвоейпрофессиональнойдеятельностисточкизренияохраныокружа ющей среды. Подробно изложены основы общей экологии, учение В.И. Вернадскогообиосференегоразвитиевнастоящеевремя,рассмотренызакономер ности функционирования экологических систем, вопросы загрязнения окружающей среды, основные экологические проблемы и пути решения этих проблем.

«Экономика»

Дисциплина обеспечивает приобретение теоретических знаний и формирование практических умений и навыков в области экономики как науки и практической деятельности, которые формируют возможность принимать

обоснованные экономические решения в процессе осуществления профессиональной деятельности.

В ходе изучения дисциплины студент знакомится с особенностями современной экономикии еесубъектами; конкуренцией и конкурентоспособност ьюсубъектов рыночной деятельности; стадиями реализации проектных решений и методиками их экономической оценки; элементами финансовой грамотности населения.

«Правоведение»

Дисциплина призвана ознакомить студентов с основами российского права. Особое внимание уделяется Конституции Российской Федерации, а также актуальным вопросам уголовного, гражданского, административного, семейного и трудового законодательства. В курсе учитываются профессиональные потребности будущих специалистов.

«Дискретная математика и теоретическая информатика»

Разделы современной математики, имеющие приложения в сфере информационных и компьютерных технологий, являются необходимыми при подготовке специалистов инженерных специальностей. Первый из них посвящен тем аспектам теории чисел, которые лежат криптографических алгоритмов и механизмов шифрования. Во втором наряду с классическими вопросами теории многочленов рассматриваются алгоритмы, ДЛЯ компьютерной математики. Третий раздел объединяет важные комбинаторные идеи и их обобщения с классические прикладной проблематикой, в том числе, генерированием комбинаторных объектов, кодированием. Обсуждается техника работы с производящими функциями. Последний раздел посвящен дискретной теории вероятностей.

«Организация ЭВМ и систем»

Данный курс знакомит слушателей с базовыми знаниями о принципах построения современных ЭВМ, комплексов и систем; основ организации ЭВМ и систем, подсистем ЭВМ, их взаимодействия между собой, приобретение знаний и навыков, необходимых для профессиональной деятельности.

Данный курс позволяет детально познакомиться с теоретическими основами построения процессоров и устройств ЭВМ.

«Теоретические основы электротехники»

Дисциплина знакомит с базовыми понятиями и методами анализа резистивных и динамических цепей. Рассматриваются постоянные, гармонические и произвольные токи и напряжения, их изображения по Лапласу. Изучаются методы работы во временной области, метод комплексных амплитуд, операторный метод расчёта.

«Комбинаторика и теория графов»

Много комбинаторных вопросов исторически рассматривались изолированно, представляя специальное решение проблемы, возникшей в некотором математическом контексте. В конце двадцатого века были разработаны общие теоретические методы, превратившие комбинаторику в независимую отрасль математики.

Дисциплина объединяет классические комбинаторные идеи и их обобщения с прикладной проблематикой, в том числе, генерированием комбинаторных объектов, кодированием. Обсуждается техника работы с производящими функциями. Большой раздел связан с базовыми понятиями теории графов и примерами алгоритмов на графах. Этот раздел можно назвать «прикладной теорией алгоритмов», так как в нем на важных примерах обсуждаются общие принципы доказательства корректности алгоритмов и их эффективности.

«Теория вероятностей и математическая статистика»

Излагаются основные идеи и методы теории вероятностей и математической статистики: классический способ вычисления вероятности, аксиоматика Колмогорова, независимость событий, полная вероятность событий, теорема Байеса, случайная величина, предельные теоремы теории вероятностей, точечное и интервальное оценивание числовых характеристик, проверка статистических гипотез, а также их приложения.

«Операционные системы»

дисциплины «Операционные системы» является изучение функций общих назначения, структурных решений построения операционных систем (ОС), углубленное изучение внутреннего устройства и алгоритмов работы основных компонентов современных операционных семейства MS систем Windows2000+иUnix-подобных систем, получение практических навыков прогр функций использованием системного аммирования программного интерфейса и библиотеки ОрепМР, формирование профессиональных компетенций в области разработки программного обеспечения в соответствии с требованиями ФГОС ВО по данному направлению подготовки.

«Математическая логика и теория алгоритмов»

Разделы современной математики, имеющие приложения в сфере информационных и компьютерных технологий, являются необходимыми при подготовке специалистов инженерных специальностей. Но важнейшее значение для будущих ІТ-специалистов имеют математические основы построения искусственных языков и алгоритмической разрешимости. Вданномкурсерассматриваютсяклассическиеидеилогикивысказываний(язык, интерпретация формул, алгоритм приведения формул в КНФ) и логики предикатов (синтаксис и семантика языка, метод резолюций). Понятие формальной системы, формальный вывод. Исчисление высказываний как формальная система. Теорема дедукции, связь выводимости и истинности формул в логике высказываний. Исчисление предикатов как формальная система. Меры сложности алгоритмов. Временная и емкостная сложность. Сложность моделирования НМТ с помощью ДМТ. Языки и задачи. Классы задач Р и NP. NP-полные задачи.

«Базы данных»

Рассматривается логическое и физическое описания данных. Дается описание иерархической, сетевой и реляционной моделей данных. Рассматриваются теоретические основы реляционных баз данных. Изучаются принципы обеспечения целостности данных. Изучаются основы языка SQL. Рассматриваются механизмы управления транзакциями и блокировками.

Рассматриваются основные этапы построения приложений баз данных. Приводятся методика использования баз данных в прикладных программных системах.

«Схемотехника»

Рассматриваются вопросы, посвященные современным проблемам аналоговой и цифровой схемотехники. Приводятся сведения об общих характеристиках и параметрах электронных устройств и интегральных микросхем. Анализируются принципы построения усилительных устройств. обратной Рассматриваются вопросы теории связи И устойчивости устройств, принципы построения генераторов электронных сигналов различной формы. Изучаются способы построения типовых аналоговых функциональных узлов, операционных и решающих усилителей, мощных выходных каскадов источников вторичного электропитания. И Рассматриваются принципы построения цифровых микроэлектронных устройств. Анализируется схемотехника электронных ключей и логических интегральных микросхем. Рассматриваются способы построения комбинационных и последовательностных цифровых устройств.

«Основы бизнес-планирования»

При изучении данной дисциплины рассматриваются ключевые вопросы бизнес-планирования деятельности организаций и предприятий в различных экономических условиях.

В рамках дисциплины рассматривается структура и содержание основных разделов бизнес-плана, освещаются вопросы методического и информационного обеспечения процедуры бизнес-планирования, технология и инструментарий бизнес-планирования.

Особое внимание при изучении данной дисциплины уделяется планированию затрат, анализу внешней среды, планированию финансовых результатов и денежных потоков, оценке эффективности инвестиций.

«Социология»

Курс нацелен на формирование у студентов знаний о предмете, структуре и функциях социологии, а также о тенденциях, закономерностях и особенностях развития современного российского социума. В ходе занятий обучающиеся осваивают навыки анализа социально значимых процессов и

явлений; использования современных социологических методов в решении своих профессиональных задач; организации анкетных опросов, составления программы социологических исследований. В результате изучения дисциплины у студентов формируются представление о месте человека в системе социальных связей и понимание социальной значимости их будущей профессии.

«Сети ЭВМ»

Дисциплина "Сети ЭВМ" направлена на формирование у студентов фундаментальных знаний об основах построения вычислительных сетей и принципах их работы. В курсе уделяется повышенное внимание вопросам адресации и маршрутизации в ІР-сетях с рассмотрением конкретных примеров. В процессе обучения студенты приобретают умения моделированию И визуализации вычислительных сетейразличной степенисложности, атакже практические навы ки работы с инструментом Cisco Packet Tracer. В ходе выполнения проектирования локальной вычислительной сети организации осуществляется разработка её транспортной подсистемы, выбор топологии и компонентов, реализация адресации.

«Безопасность жизнедеятельности»

Объектами обучения являются физические, химические, биологические и психофизиологические опасные и вредные факторы. Принципы защиты от этих факторов должны быть известны и быть использованы для уменьшения профессионального риска возможных опасностей. Изучаются методы расчёта, требования основных российских законов и нормативных документов, некоторые международные рекомендации в области защиты от риска поражения электрическим током, взрыва и пожара, излучения и других негативных факторов.

«Физическая культура и спорт»

В дисциплине учебный материал направлен на создание целостной системы теоретических знаний о физической культуре, умений направленного использования разнообразных средств физической культуры и спорта для сохранения здоровья и формирования устойчивой потребности студентов в

систематических занятиях спортом. За время обучения студенты овладевают основами методики самостоятельных занятий физической культурой и спортом. Приобретают опыт практической деятельности и стойкое желание продолжения занятий физической культурой и спортом после завершения учебного курса.

«Российская государственность: историко-правовые аспекты»

Дисциплина "Российская государственность: историко-правовые аспекты" -составная часть модуля "Основы российской государственности". Ее содержанием является комплексное и системное представление России как страны и государства в ее историческом и политико-правовом измерении. Основное внимание уделяется природно-географическим и социально-политическим характеристикам современной России, а также ее государственному строю, организации и функционированию органов публичной власти, правовому статусу человека и гражданина. Исторические аспекты российской государственности более подробно рассматриваются в рамках дисциплины "История России", которая с 1 сентября 2023 г. преподается в расширенном формате.

«Философские измерения цивилизационного развития России»

Дисциплина «Философские измерения цивилизационного развития России» является составной частью модуля «Основы российской государственности», входящего в обязательную часть подготовки бакалавров. Изучение данной дисциплины направлено на формирование у обучающихся потребности

философскогоосмысленияРоссиикакцивилизации, еемировоззренческих прин пипов.

Первый раздел «Российское государство-цивилизация» посвящен теоретическому обзору цивилизационного подхода, понятий цивилизации и государства, их неразрывной связи друг с другом. Также обсуждаются особенности цивилизационного развития России сквозь призму философии истории.

Во втором разделе «Российское мировоззрение и ценности российской цивилизации» рассматриваются фундаментальные ценностные принципы

российской цивилизации (единство многообразия, суверенитет, согласие и сотрудничество, любовь и ответственность, созидание и развитие), а также связанные между собойценностные ориентиры российского цивилизационного развития (такиека к стабильность, миссия, ответственность и справедливость).

«Социально-политические детерминанты развития России»

Дисциплина призвана сформировать у обучающихся системное знание, навыки и компетенции, а также ценности, правила и нормы поведения, связанные с осознанием принадлежности к российскому обществу, развитием чувства патриотизма и гражданственности, формированием духовно-нравственного и культурного фундамента развитой и цельной личности, осознающей особенности исторического пути российского государства, самобытность его политической организации и сопряжение личного достоинства и успеха с общественным прогрессом и политической стабильностью своей Родины.

В курсе задействован существенный объем знаний, представлений, научных концепций, атакжеисторических, культурологических, социологических иных данных, связанных с проблематикой развития российской цивилизации и её государственности в исторической ретроспективе и в условиях актуальных вызовов политической, экономической, техногенной и иной природы.

«Иностранный язык»

Цель курса — обучение практическому владению иностранным языком (английским), критерием которого является умение пользоваться наиболее употребительными языковыми средствами в основных видах речевой деятельности: говорение, аудирование, чтение и письмо. Задача курса — овладение способностью общаться в большинстве ситуаций, которые могут возникнуть в повседневной и профессиональной деятельности. По структуре курс делится на следующиеаспекты(модули):разговорнаяпрактикаиаудирование,чтение,письм енная практика, практика перевода и практическая грамматика. Модули различаются тематикой и лексическим составом учебного и информационного

материалов. Обеспечивается систематическое совершенствование всех четырех языковых умений и основных грамматических тем.

«Русский язык как иностранный»

Данная дисциплина ориентирована на обучение иностранных учащихся, закончивших подготовительное отделение одного из вузов РФ и владеющих русским языком на уровне ТРКИ–1. Содержание программы составляют требования к уровню владения языком в различных видах речевой деятельности, а также языковой и речевой материал. Главная цель обучения – обеспечение иностранных учащихся языковыми знаниями, умениями и навыками в различных видах речевой деятельности, необходимыми для овладения специальностью на базе русского языка и для знакомства с историей, наукой, экономикой, культурой и современной жизнью России. В процессе обучения студенты приобретают комплекс необходимых навыков и умений, обеспечивающих их участие в учебной деятельности на факультете и общение в профессиональной, деловой и социально-культурной сферах.

«Производственная практика (технологическая (проектно-технологическая) практика)»

Производственная практика (технологическая (проектно-технологическая) практика) обеспечивает базовые практические навыки в области проведения самостоятельной работы, формирование компетенций ДЛЯ успешной профессиональной деятельности; закрепление знаний ПО изучаемым дисциплинам; приобретение навыков работы с литературными источниками. Программа производственной практики регулирует вопросы ее организации и проведения, раскрывает содержание и структуру работы, требования к отчетной документации, а также подбор необходимых материалов для ее оформления.

«Производственная практика (научно-исследовательская работа)»

Производственная практика (научно-исследовательская работа) обеспечивает базовые практические навыки в области проведения самостоятельной

научно-исследовательскойработы, формирование компетенций для успешной пр

офессиональной деятельности; закреплениезнаний поизучаемым дисциплинам. Программа производственной практики регулирует вопросы ее организации и проведения, раскрывает содержание и структуру работы, требования к отчетной документации, а также подбор необходимых материалов для ее оформления.

«Учебная практика (технологическая (проектно-технологическая) практика)»

Учебная практика представляет собой вид учебных занятий, обеспечивающих профессионально-ориентированную подготовку студентов. Она направлена на закрепление и приобретение новых теоретических знаний и практических навыков по проектированию программ на языке Java. Основное внимание уделяется изучению и освоению базовых понятий, методов и приемов использования шаблонов проектирования. На практике рассматриваются порождающие, структурные и поведенческие шаблоны проектирования и их описания на языке UML.

«Производственная практика (преддипломная практика)»

Преддипломная практика предусматривает расширение и углубление знаний, умений и навыков, полученных за весь период обучения в университете, и непосредственно предшествует подготовке и защите выпускной квалификационной работы.

В результате прохождения преддипломной практики обучающийся должен довести до финального результата исследования по теме своей выпускной квалификационной работы, выполнить сбор практического материала для подготовки ВКР, провести обработку и анализ полученных материалов. За время прохождения преддипломной практики студенты учатся формулировать поставленную перед ними задачу, проводить обзор и сравнение методов ее решения. Одним из результатов практики должен быть грамотно оформленный отчет по результатам проведенного аналитического обзора и решения поставленных задач.

«Выполнение и защита выпускной квалификационной работы»

Государственная итоговая аттестация включает в себя защиту выпускной квалификационной работы. Государственная итоговая аттестация является заключительным этапом освоения основной образовательной программы. В ходе государственной итоговой аттестации устанавливается уровень подготовки выпускника высшего учебного заведения к выполнению профессиональных задач и соответствия его подготовки требованиям стандарта.

«Введение в специальность»

«Введение в специальность» знакомит Дисциплина студентов профильной деятельностью кафедр факультета компьютерных технологий и информатики, направлениями научной и проектной работы учебно-научных центров, лабораторий, отдельных научных групп, стратегических партнеров. Рассматриваются общие вопросы организации учебного процесса дисциплин учебных планов взаимосвязи подготовки обучающихся. Обсуждается роль общеобразовательных и специальных дисциплин.

«Анализ данных в программах с открытым кодом»

В основу курса положена методическая концепция практикума по изучению и освоению инструментов для анализа данных. В качестве инструментов используются программные продукты с открытым кодом. Все практические работы практикума сгруппированы в разделы анализа данных, теоретическое обеспечение которых выполняется на лекционных занятиях

«Основы русскоязычной коммуникации в профессиональной сфере»

Дисциплина ориентирована на обучение иностранных учащихся, закончивших подготовительное отделение одного из вузов России и владеющих русским языком на уровне ТРКИ—1. Содержание программы составляют требования к уровню владения языком в различных видах речевой деятельности, а также языковой и речевой материал. Дисциплина преподается параллельно с базовой дисциплиной «Русский язык как иностранный», логически продолжая изучение различных аспектов современного русского литературного языка, и знакомит учащихся с особенностями научного стиля речи, типами текстов,

наиболее типичными конструкциями и жанровым разнообразием этого стиля. Изучение дисциплины позволяет учащимся активно участвовать во всех формах учебного процесса: выступать на семинарах и практических занятиях, слушать и конспектировать лекции, читать специальную литературу, сдавать зачеты и экзамены. Дисциплина способствует иностранным учащимся в овладении русским языком как средством получения высшего образования и профессиональной подготовки.

«Защита компьютерной информации»

Дисциплина обеспечивает теоретическую и практическую подготовку в области принципов, методов и средств защиты компьютерной информации от целенаправленных атак и непреднамеренных модификаций. Программа дисциплины включает в себя изучение основных видов угроз и атак, методов обнаружения вторжений И защиты OT них, базовых инструментов информационной защиты. Особое внимание в курсе уделено знакомству с средствами информационной защиты. Лекционный материал базовыми дисциплины по каждому разделу подкрепляется примерами использования конкретных инструментов защиты и организационных мероприятий.